
NAG C Library Function Document

nag_ztbrfs (f07vvc)

1 Purpose

nag_ztbrfs (f07vvc) returns error bounds for the solution of a complex triangular band system of linear

equations with multiple right-hand sides, AX ¼ B, ATX ¼ B or AHX ¼ B.

2 Specification

void nag_ztbrfs (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans,
Nag_DiagType diag, Integer n, Integer kd, Integer nrhs, const Complex ab[],
Integer pdab, const Complex b[], Integer pdb, const Complex x[], Integer pdx,
double ferr[], double berr[], NagError *fail)

3 Description

nag_ztbrfs (f07vvc) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex triangular band system of linear equations with multiple right-hand sides AX ¼ B,

ATX ¼ B or AHX ¼ B. The function handles each right-hand side vector (stored as a column of the
matrix B) independently, so we describe the function of nag_ztbrfs (f07vvc) in terms of a single right-hand
side b and solution x.

Given a computed solution x, the function computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

ðAþ �AÞx ¼ bþ �b
j�aijj � �jaijj and j�bij � �jbij:

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i

jxi � x̂xij=max
i

jxij

where x̂x is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: indicates whether A is upper or lower triangular as follows:

f07 – Linear Equations (LAPACK) f07vvc

[NP3645/7] f07vvc.1

if uplo ¼ Nag Upper, A is upper triangular;

if uplo ¼ Nag Lower, A is lower triangular.

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: trans – Nag_TransType Input

On entry: indicates the form of the equations as follows:

if trans ¼ Nag NoTrans, the equations are of the form AX ¼ B;

if trans ¼ Nag Trans, the equations are of the form ATX ¼ B;

if trans ¼ Nag ConjTrans, the equations are of the form AHX ¼ B.

Constraint: trans ¼ Nag NoTrans, Nag Trans or Nag ConjTrans.

4: diag – Nag_DiagType Input

On entry: indicates whether A is a non-unit or unit triangular matrix as follows:

if diag ¼ Nag NonUnitDiag, A is a non-unit triangular matrix;

if diag ¼ Nag UnitDiag, A is a unit triangular matrix; the diagonal elements are not
referenced and are assumed to be 1.

Constraint: diag ¼ Nag NonUnitDiag or Nag UnitDiag.

5: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

6: kd – Integer Input

On entry: k, the number of super-diagonals of the matrix A if uplo ¼ Nag Upper or the number of
sub-diagonals if uplo ¼ Nag Lower.

Constraint: kd � 0.

7: nrhs – Integer Input

On entry: r, the number of right-hand sides.

Constraint: nrhs � 0.

8: ab½dim� – const Complex Input

Note: the dimension, dim, of the array ab must be at least maxð1; pdab� nÞ.
On entry: the n by n triangular matrix A. This is stored as a notional two-dimensional array with
row elements or column elements stored contiguously. The storage of elements aij depends on the

order and uplo parameters as follows:

if order ¼ Nag ColMajor and uplo ¼ Nag Upper,
aij is stored in ab½kþ i� jþ ðj� 1Þ � pdab�, for i ¼ 1; . . . ; n and

j ¼ i; . . . ;minðn; iþ kÞ;
if order ¼ Nag ColMajor and uplo ¼ Nag Lower,

aij is stored in ab½i� jþ ðj� 1Þ � pdab�, for i ¼ 1; . . . ; n and

j ¼ maxð1; i� kÞ; . . . ; i;
if order ¼ Nag RowMajor and uplo ¼ Nag Upper,

aij is stored in ab½j� iþ ði� 1Þ � pdab�, for i ¼ 1; . . . ; n and

j ¼ i; . . . ;minðn; iþ kÞ;

f07vvc NAG C Library Manual

f07vvc.2 [NP3645/7]

if order ¼ Nag RowMajor and uplo ¼ Nag Lower,
aij is stored in ab½kþ j� iþ ði� 1Þ � pdab�, for i ¼ 1; . . . ; n and

j ¼ maxð1; i� kÞ; . . . ; i.

9: pdab – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab � kdþ 1.

10: b½dim� – const Complex Input

Note: the dimension, dim, of the array b must be at least maxð1;pdb� nrhsÞ when
order ¼ Nag ColMajor and at least maxð1; pdb� nÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix B is stored in b½ðj� 1Þ � pdbþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix B is stored in b½ði� 1Þ � pdbþ j� 1�.

On entry: the n by r right-hand side matrix B.

11: pdb – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:

if order ¼ Nag ColMajor, pdb � maxð1;nÞ;
if order ¼ Nag RowMajor, pdb � maxð1; nrhsÞ.

12: x½dim� – const Complex Input

Note: the dimension, dim, of the array x must be at least maxð1;pdx� nrhsÞ when
order ¼ Nag ColMajor and at least maxð1; pdx� nÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix X is stored in x½ðj� 1Þ � pdxþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix X is stored in x½ði� 1Þ � pdxþ j� 1�.
On entry: the n by r solution matrix X, as returned by nag_ztbtrs (f07vsc).

13: pdx – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:

if order ¼ Nag ColMajor, pdx � maxð1; nÞ;
if order ¼ Nag RowMajor, pdx � maxð1;nrhsÞ.

14: ferr½dim� – double Output

Note: the dimension, dim, of the array ferr must be at least maxð1; nrhsÞ.
On exit: ferr½j� 1� contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

15: berr½dim� – double Output

Note: the dimension, dim, of the array berr must be at least maxð1; nrhsÞ.
On exit: berr½j� 1� contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

16: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

f07 – Linear Equations (LAPACK) f07vvc

[NP3645/7] f07vvc.3

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, kd = hvaluei.
Constraint: kd � 0.

On entry, nrhs = hvaluei.
Constraint: nrhs � 0.

On entry, pdab ¼ hvaluei.
Constraint: pdab > 0.

On entry, pdb ¼ hvaluei.
Constraint: pdb > 0.

On entry, pdx ¼ hvaluei.
Constraint: pdx > 0.

NE_INT_2

On entry, pdab ¼ hvaluei, kd ¼ hvaluei.
Constraint: pdab � kdþ 1.

On entry, pdb ¼ hvaluei, n ¼ hvaluei.
Constraint: pdb � maxð1; nÞ.
On entry, pdb ¼ hvaluei, nrhs ¼ hvaluei.
Constraint: pdb � maxð1; nrhsÞ.
On entry, pdx ¼ hvaluei, n ¼ hvaluei.
Constraint: pdx � maxð1; nÞ.
On entry, pdx ¼ hvaluei, nrhs ¼ hvaluei.
Constraint: pdx � maxð1; nrhsÞ.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

A call to nag_ztbrfs (f07vvc), for each right-hand side, involves solving a number of systems of linear

equations of the form Ax ¼ b or AHx ¼ b; the number is usually 5 and never more than 11. Each solution
involves approximately 8nk real floating-point operations (assuming n � k).

The real analogue of this function is nag_dtbrfs (f07vhc).

f07vvc NAG C Library Manual

f07vvc.4 [NP3645/7]

9 Example

To solve the system of equations AX ¼ B and to compute forward and backward error bounds, where

A ¼

�1:94þ 4:43i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
�3:39þ 3:44i 4:12� 4:27i 0:00þ 0:00i 0:00þ 0:00i
1:62þ 3:68i �1:84þ 5:53i 0:43� 2:66i 0:00þ 0:00i
0:00þ 0:00i �2:77� 1:93i 1:74� 0:04i 0:44þ 0:10i

1
CCA

0
BB@

and

B ¼

�8:86� 3:88i �24:09� 5:27i
�15:57� 23:41i �57:97þ 8:14i
�7:63þ 22:78i 19:09� 29:51i
�14:74� 2:40i 19:17þ 21:33i

1
CCA

0
BB@ :

9.1 Program Text

/* nag_ztbrfs (f07vvc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, k, kd, n, nrhs, pdab, pdb, pdx;
Integer ferr_len, berr_len;
Integer exit_status=0;
Nag_UploType uplo_enum;
NagError fail;
Nag_OrderType order;

/* Arrays */
char uplo[2];
Complex *ab=0, *b=0, *x=0;
double *berr=0, *ferr=0;

#ifdef NAG_COLUMN_MAJOR
#define AB_UPPER(I,J) ab[(J-1)*pdab + k + I - J - 1]
#define AB_LOWER(I,J) ab[(J-1)*pdab + I - J]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

order = Nag_ColMajor;
#else
#define AB_UPPER(I,J) ab[(I-1)*pdab + J - I]
#define AB_LOWER(I,J) ab[(I-1)*pdab + k + J - I - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define X(I,J) x[(I-1)*pdx + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07vvc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%ld%*[^\n] ", &n, &kd, &nrhs);
pdab = kd + 1;

#ifdef NAG_COLUMN_MAJOR
pdb = n;

f07 – Linear Equations (LAPACK) f07vvc

[NP3645/7] f07vvc.5

pdx = n;
#else

pdb = nrhs;
pdx = nrhs;

#endif

ferr_len = nrhs;
berr_len = nrhs;

/* Allocate memory */
if (!(berr = NAG_ALLOC(berr_len, double)) ||

!(ferr = NAG_ALLOC(ferr_len, double)) ||
!(ab = NAG_ALLOC((kd+1) * n, Complex)) ||
!(b = NAG_ALLOC(n * nrhs, Complex)) ||
!(x = NAG_ALLOC(n * nrhs, Complex)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file, and copy B to X */
Vscanf(" ’ %1s ’%*[^\n] ", uplo);
if (*(unsigned char *)uplo == ’L’)

uplo_enum = Nag_Lower;
else if (*(unsigned char *)uplo == ’U’)

uplo_enum = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
k = kd + 1;
if (uplo_enum == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= MIN(i+kd,n); ++j)

{
Vscanf(" (%lf , %lf)", &AB_UPPER(i,j).re,

&AB_UPPER(i,j).im);
}

}
Vscanf("%*[^\n] ");

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = MAX(1,i-kd); j <= i; ++j)

{
Vscanf(" (%lf , %lf)", &AB_LOWER(i,j).re,

&AB_LOWER(i,j).im);
}

}
Vscanf("%*[^\n] ");

}

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= nrhs; ++j)
Vscanf(" (%lf , %lf)", &B(i,j).re, &B(i,j).im);

}
Vscanf("%*[^\n] ");
/* Copy B to X */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= nrhs; ++j)

{
X(i,j).re = B(i,j).re;

f07vvc NAG C Library Manual

f07vvc.6 [NP3645/7]

X(i,j).im = B(i,j).im;
}

}
f07vsc(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,

kd, nrhs, ab, pdab, x, pdx, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07vsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Improve solution, and compute backward errors and */
/* estimated bounds on the forward errors */
f07vvc(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,

kd, nrhs, ab, pdab, b, pdb, x, pdx, ferr, berr,
&fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from f07vvc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print solution */

x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs,
x, pdx, Nag_BracketForm, "%7.4f", "Solution(s)",
Nag_IntegerLabels, 0, Nag_IntegerLabels,
0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)

Vprintf("%11.1e%s", berr[j-1], j%7==0 ?"\n":" ");
Vprintf("\nEstimated forward error bounds (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)

Vprintf("%11.1e%s", ferr[j-1], j%7==0 ?"\n":" ");
Vprintf("\n");

END:
if (berr) NAG_FREE(berr);
if (ferr) NAG_FREE(ferr);
if (ab) NAG_FREE(ab);
if (b) NAG_FREE(b);
if (x) NAG_FREE(x);
return exit_status;

}

9.2 Program Data

f07vvc Example Program Data
4 2 2 :Values of N, KD and NRHS
’L’ :Value of UPLO

(-1.94, 4.43)
(-3.39, 3.44) (4.12,-4.27)
(1.62, 3.68) (-1.84, 5.53) (0.43,-2.66)

(-2.77,-1.93) (1.74,-0.04) (0.44, 0.10) :End of matrix A
(-8.86, -3.88) (-24.09, -5.27)
(-15.57,-23.41) (-57.97, 8.14)
(-7.63, 22.78) (19.09,-29.51)
(-14.74, -2.40) (19.17, 21.33) :End of matrix B

f07 – Linear Equations (LAPACK) f07vvc

[NP3645/7] f07vvc.7

9.3 Program Results

f07vvc Example Program Results

Solution(s)
1 2

1 (0.0000, 2.0000) (1.0000, 5.0000)
2 (1.0000,-3.0000) (-7.0000,-2.0000)
3 (-4.0000,-5.0000) (3.0000, 4.0000)
4 (2.0000,-1.0000) (-6.0000,-9.0000)

Backward errors (machine-dependent)
8.3e-18 4.2e-17

Estimated forward error bounds (machine-dependent)
1.8e-14 2.2e-14

f07vvc NAG C Library Manual

f07vvc.8 (last) [NP3645/7]

	f07vvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	trans
	diag
	n
	kd
	nrhs
	ab
	pdab
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

