f07 — Linear Equations (LAPACK) f07vve

NAG C Library Function Document
nag ztbrfs (f07vvc)

1 Purpose

nag_ztbrfs (f07vvc) returns error bounds for the solution of a complex triangular band system of linear
equations with multiple right-hand sides, AX = B, ATX = Bor A"X = B.

2 Specification

void nag_ztbrfs (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans,
Nag_DiagType diag, Integer n, Integer kd, Integer nrhs, const Complex ab[],
Integer pdab, const Complex b[], Integer pdb, const Complex x[], Integer pdx,
double ferr[], double berr[], NagError *fail)

3 Description

nag_ztbrfs (f07vvc) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex triangular band system of linear equations with multiple right-hand sides AX = B,

ATX = B or A" X = B. The function handles each right-hand side vector (stored as a column of the
matrix B) independently, so we describe the function of nag_ztbrfs (f07vvc) in terms of a single right-hand
side b and solution z.

Given a computed solution z, the function computes the component-wise backward error (3. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

(A+6A)x = b+ 6b
|6a;j| < Bla;;| and |6b;| < B[by].

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |x; — Z;|/ max |z;|
1 1

where z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo — Nag_UploType Input

On entry: indicates whether A is upper or lower triangular as follows:

[NP3645/7] f07vve.I

f07vve NAG C Library Manual

if uplo = Nag_Upper, A is upper triangular;
if uplo = Nag_Lower, A is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: trans — Nag TransType Input
On entry: indicates the form of the equations as follows:

if trans = Nag NoTrans, the equations are of the form AX = B,
if trans = Nag_Trans, the equations are of the form A7 X = B;

if trans = Nag_ConjTrans, the equations are of the form A7 X = B.

Constraint: trans = Nag_NoTrans, Nag_Trans or Nag_ConjTrans.

4: diag — Nag DiagType Input
On entry: indicates whether A is a non-unit or unit triangular matrix as follows:
if diag = Nag NonUnitDiag, A is a non-unit triangular matrix;

if diag = Nag UnitDiag, A is a unit triangular matrix; the diagonal elements are not
referenced and are assumed to be 1.

Constraint: diag = Nag NonUnitDiag or Nag_UnitDiag.

5: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

6: kd — Integer Input

On entry: k, the number of super-diagonals of the matrix A if uplo = Nag_Upper or the number of
sub-diagonals if uplo = Nag_Lower.

Constraint: kd > 0.

7: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

8: ab[dim| — const Complex Input
Note: the dimension, dim, of the array ab must be at least max(1, pdab X n).

On entry: the n by n triangular matrix A. This is stored as a notional two-dimensional array with
row elements or column elements stored contiguously. The storage of elements a;; depends on the
order and uplo parameters as follows:

if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ab[k +i —j+ (j — 1) x pdab], for i = 1,...,n and
j=1t,...,min(n,i+ k);

if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ab[i — j+ (j — 1) x pdab], for i = 1,...,n and
j=max(l,i —k),...,i;

if order = Nag RowMajor and uplo = Nag_Upper,
a;; is stored in ab[j —i 4 (i — 1) x pdab], for i = 1,...,n and
j=1,...,min(n,i + k),

f07vve.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07vve

10:

11:

13:

14:

15:

16:

if order = Nag RowMajor and uplo = Nag _Lower,
a;; is stored in ab[k+ j — i+ (i — 1) x pdab], for i = 1,...,n and
j=max(1l,i — k),...,i.
pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint. pdab > kd + 1.

b[dim] — const Complex Input

Note: the dimension, dim, of the array b must be at least max(l,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(i — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:
if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag RowMajor, pdb > max(1, nrhs).
x[dim] — const Complex Input

Note: the dimension, dim, of the array x must be at least max(l,pdx x nrhs) when
order = Nag_ColMajor and at least max(1,pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix X is stored in x[(j — 1) x pdx + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + 5 — 1].

On entry: the n by r solution matrix X, as returned by nag_ztbtrs (f07vsc).

pdx — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:

if order = Nag_ColMajor, pdx > max(1,n);

if order = Nag_RowMajor, pdx > max(1, nrhs).
ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).
On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,...,n
berr[dim] — double Output
Note: the dimension, dim, of the array berr must be at least max (1, nrhs).
On exit: berr[j — 1] contains the component-wise backward error bound 3 for the jth solution
vector, that is, the jth column of X, for j=1,2,....7.
fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

[NP3645/7] f07vve.3

f07vve NAG C Library Manual

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, kd = (value).
Constraint: kd > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT 2

On entry, pdab = (value), kd = (value).
Constraint: pdab > kd + 1.

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

A call to nag ztbrfs (f07vvc), for each right-hand side, involves solving a number of systems of linear

equations of the form Az = b or A”2 = b; the number is usually 5 and never more than 11. Each solution
involves approximately 8nk real floating-point operations (assuming n > k).

The real analogue of this function is nag_dtbrfs (f07vhc).

f07vve.4 [NP3645/7]

f07 — Linear Equations (LAPACK) f07vve

9 Example

To solve the system of equations AX = B and to compute forward and backward error bounds, where

—1.94 4 4.43; 0.00 4+ 0.00¢ 0.00 +0.00¢ 0.00 + 0.00¢
—339+344: 4.12-4.27; 0.0040.00¢ 0.00+ 0.00:
1.62 +3.68; —1.84 +5.537 0.43 —2.66: 0.004 0.00¢
0.00+0.00¢ —2.77-1.937 1.74—-0.04; 0.4440.10¢

A=

and

—8.86 — 3.88: —24.09 — 5.27:
—15.57 -23.417 —-57.97+ 8.14¢
—7.63 +22.784 19.09 — 29.51%
—14.74 — 2.40¢ 19.17 +21.334

B:

9.1 Program Text

/* nag_ztbrfs (f07vvc) Example Program.
* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, j, k, kd, n, nrhs, pdab, pdb, pdx;
Integer ferr_len, berr_len;
Integer exit_status=0;
Nag_UploType uplo_enum;
NagError fail;
Nag_OrderType order;

/* Arrays */

char uplo([2];

Complex *ab=0, *b=0, *x=0;
double *berr=0, *ferr=0;

#ifdef NAG_COLUMN_MAJOR

#define AB_UPPER(I,J) ab[(J-1)*pdab + k + I - J - 1]
#define AB_LOWER(I,J) ab[(J-1)*pdab + I - J]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]
order = Nag_ColMajor;
#else
#define AB_UPPER(I,J) ab[(I-1)*pdab + J - I]
#define AB_LOWER(I,J) ab[(I-1)*pdab + k + J - I - 1]

#define B(I,J) b[(I-1)#*pdb + J - 1]

#define X(I,J) x[(I-1)*pdx + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f07vvc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("$*[*\n] ");
Vscanf ("%$1d%1d%1d%s*["\n] ", &n, &kd, &nrhs);
pdab = kd + 1;
#ifdef NAG_COLUMN_MAJOR
pdb = n;

[NP3645/7] f07wve.5

f07vve NAG C Library Manual

pdx = n;
#else
pdb = nrhs;
pdx = nrhs;
#endif
ferr_len = nrhs;
berr_len = nrhs;

/* Allocate memory */

if (!(berr = NAG_ALLOC(berr_len, double)
ferr = NAG_ALLOC(ferr_len, double)

ab = NAG_ALLOC((kd+1l) * n, Complex

b = NAG_ALLOC(n * nrhs, Complex))

x = NAG_ALLOC(n * nrhs, Complex))

) 1
1 () 1
1 ())
1([
1()

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file, and copy B to X #*/
Vscanf (" ' %1s ’'%*["\n] ", uplo);
if (*(unsigned char #*)uplo == 'L’)
uplo_enum = Nag_Lower;
else if (#*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
¥
k = kd + 1;
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1i)

for (§ = i; j <= MIN(i+kd,n); ++j)

Vscanf (" (%1f , %1f)", &AB_UPPER(i,]j).re,
&AB_UPPER(i,j).im);
}
b
Vscanf ("s*[*\n] ");
}
else
{
for (1 = 1; 1 <= n; ++1)
{
for (j = MAX(1,i-kd); j <= i; ++3j)
{
Vscanf (" (%1f , %1f)", &AB_LOWER(i,]j).re,
&AB_LOWER(1i,Jj) .im);
}
b
Vscanf ("sx[*\n] ");
}

for (i = 1; i <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
Vscanf (" (%1f , %1f)", &B(i,j).re, &B(i,Jj).im);
}
Vscanf ("s*["\n] ");
/* Copy B to X =%/
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= nrhs; ++j)
{
X(i,j).re = B(i,j).re;

f07vve.6 [NP3645/7]

f07 — Linear Equations (LAPACK) f07vve

X(i,j).im = B(i,]j).im;
¥
}
fO7vsc(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,
kd, nrhs, ab, pdab, x, pdx, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7vsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

3
/* Improve solution, and compute backward errors and =*/
/* estimated bounds on the forward errors */
fO7vvc(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,
kd, nrhs, ab, pdab, b, pdb, x, pdx, ferr, berr,

sfail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07vvc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print solution x/

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs,
x, pdx, Nag_BracketForm, "%7.4f", "Solution(s)",
Nag_IntegerLabels, 0, Nag_IntegerLabels,
o, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf ("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
Vprintf ("$1l.1le%s", berr[j-1]1, j%7==0 2"\n":" ");
Vprintf ("\nEstimated forward error bounds (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
Vprintf ("s11l.1le%ss", ferr([j-11, j%7==0 2"\n":" ");
Vprintf ("\n") ;
END:

if (berr) NAG_FREE (berr);

(
if (ferr) NAG_FREE(ferr);
if (ab) NAG_FREE (ab) ;
if (b) NAG_FREE (b) ;

if (x) NAG_FREE(x);
return exit_status;

9.2 Program Data

fO07vvc Example Program Data
4 2 2 :Values of N, KD and NRHS
'L’ :Value of UPLO
(=1.94, 4.43)
(-3.39, 3.44) 4.)
(1.62, 3.68) 1.84, 5.53) (0.43,-2.66)
-2.77,-1.93) (1.74,-0.04) (0.44, 0.10) :End of matrix A
(-24.09, -5.27)
(-57.97, 8.14)
(19.09,-29.51)
(19.17, 21.33)

(

(-15.57,-23.41
(-7.63, 22.78
(-

(
(
(
-8.86, -3.88)
)
)
14.74, -2.40)

:End of matrix B

[NP3645/7] f07wve.7

f07vve NAG C Library Manual

9.3 Program Results

fO07vvc Example Program Results

Solution(s)

1 2
1 (0.0000, 2.0000) (1.0000, 5.0000)
2 (1.0000,-3.0000) (-7.0000,-2.0000)
3 (-4.0000,-5.0000) (3.0000, 4.0000)
4 (2.0000,-1.0000) (-6.0000,-9.0000)
Backward errors (machine-dependent)
8.3e-18 4.2e-17
Estimated forward error bounds (machine-dependent)
1.8e-14 2.2e-14

f07vwe.8 (last) [NP3645/7]

	f07vvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	trans
	diag
	n
	kd
	nrhs
	ab
	pdab
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

